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Weakly Coupled Dielectric Resonators

JEAN VAN BLADEL, FELLOW, IEEE .

Abstract —The resonant modes of a pair of coupled resonators of high €,
are considered in the limit of large spacings D between resonators.
Attention is focused on the lowest “magnetic-moment” mode, where the
coupling effect leads to a split of the original mode into an even and an odd
part. Formulas are obtained for the coupling coefficient, the resonant
frequencies and @ of the modes. They are strikingly similar to those for
weakly-coupled R — L — C circuits. The accuracy of the formulas is verified
by comparing their predictions with direct numerical data, available for
coupled circular cylindrical resonators.

I. INTRODUCTION

HE RESONANT modes of a dielectric resonator of
high ¢, are obtained by solving the differential prob-
lem ‘

—curl curl &, + k3h, =0  in the dielectric

~curlh,, =0  outside the dielectric. (1)

The eigenvector /,, must be continuous across the boundary
surface, and of order 1/R? (or higher) at large distances
[1]. The numerical solution of (1), a difficult three-dimen-
sional problem, simplifies when the body is of revolution
(e.g., a sphere or a circular cylinder [2]). In the coupled
structure shown in Fig. 1, (1) must be solved in the
presence of a composite dielectric consisting of volumes 1
and 2. When the spacing between 1 and 2 is small, the field
distribution in each volume will be significantly perturbed
with respect to that of the resonator isolated in free space.
Any simplifying feature, such as symmetry of revolution,
will be lost, except in structures of the type shown in
Fig. 4.
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Fig. 1. Coupled resonators with corresponding resonant modes.

The conclusion is clear: the three-dimensional prdblem
must be solved. To avoid this very arduous task, approxi-

. mations have been made in the past [3], [4]. Cohn, for

example, represents dielectric resonators by conducting
loops carrying currents I, and endowed with L, C, and
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mutual inductance M. In the present paper, we shall keep
the idea of the equivalent circuit, but will seek to obtain its
parameters by direct field methods. Given the complexity
of the problem. we shall assume that the resonators are
“far apart”. An asymptotic approach is now possible,
which is valid for large spacings D. Truly, resonators in
structures such as microwave filters are normally tightly-
coupled. It will be interesting, however, to investigate how
good (or bad) our asymptotic results are at moderate
spacings D. Good results would allow us to extend the
applicability of our (very simple) formulas to many realis-
tic configurations.

To simplify the problem, while retaining the main fea-
tures of the method, we shall assume (1) that the two
resonators are identical, although oriented arbitrarily with
respect to the line joining their reference points 0,0,, and
(2) that the analysis centers on the lowest resonant mode,
which radiates like a magnetic dipole p,, [1].

Central to our analysis is the concept of “large D”. We
shall assume D to be large enough for (1) the exterior field
h,, of the isolated resonator to be undistinguishable, for all
practical purposes, from that of a dipole p,, located in 0.
From the example of the ring-resonator, for which accurate
data are available 2], it can be expected that this assump-
tion will be acceptable as soon as D is larger than twice the
largest dimension of the resonator, and (2) the exterior
field &, of the isolated resonator to be practically constant
over the volume occupied by the other resonator.

On the other hand, we shall restrict D to remain small
with respect to Ay, the wavelength in vacuo. This restric-
tion ensures that resonator 2 lies in the static-field of
resonator 1 (and conversely). It is useful, in that respect, to
note that the angular frequency at resonance, and the
corresponding wavelength, are given by

w,, = %kmc

(Ap)o= 22w, @

m

For large indices of refraction N = \/Z (the limit in which

we are interested), A, and therefore the extent of the static
region, will be correspondingly large. For a sphere, for
example, the lowest value of 2% /k,, is twice the radius a,
hence A, is N times 2a. The theory developed in the sequel
shows striking similarities with that of coupled resonant
LC circuits. We shall therefore start with a short enumera-
tion of the main results of the latter.

1I. SoME RESULTS FROM COUPLED LC CIRCUIT
THEORY

Fig. 2(a) shows two magnetically coupled resonant cir-
cuits. The mutual inductance M is positive when the fluxes
created by positive I; and I, have the same sense in the
coils, and negative in the opposite case. Let y be the
coupling coefficient M/L, and w, = (LC)~ /2 the resonant
angular frequency of the isolated circuit. The coupled
circuit can resonate in two modes, characterized by differ-
ent resonant frequencies, viz. (Fig. 2(b)) a) the evern mode,
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Fig. 2. Coupled resonant circuits with fundamental modes of oscilla-
tion.

where
2
2_ %
CeT 11 ¥
L=1, 3)
and b) the odd mode, where
2
2__ %
w2 =
0 1— Y
I=—1,. (4)

When vy is positive the higher frequency is that of the
odd mode, the lower one that of the even mode. When v is
negative, the opposite occurs. Notice also that the even or
odd character depends on the (arbitrary) choice of the
positive directions for I; and I,.

Let us now introduce a resistance R in series with each
LC circuit. In the absence of sources, the following rela-
tionship exists between I, and I,:

yw
hi=- 2_ 2 -“"“’rl2
W — s —
70
2
YW
=- F 1. (5)
wz—w2(1+—)
" Q
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Here, Q is the quality factor w,L /R (assumed high), and
the right-hand expression in (5) is valid in the immediate
vicinity of w,. When the coupled structure oscillates freely,
the even and odd modes have different quality factors,
given respectively by

(6)

Under forced oscillations (Fig. 2(c)), the circuit equa-
tions become

L, e,
ZVI:J(OJ_:_—E Iﬁ-]w‘ylz

1 . (e e

T Va=Jeyh+ w—;—J-Q)Iz- (7)

III. FREE OSCILLATIONS OF COUPLED DIELECTRIC

RESONATORS

Following the policy outlined in the Introduction, we
shall assume that each resonator in the structure of Fig.
1(a) behaves like an isolated resonator immersed in the
(uniform) weak field H of the other. Let us first consider
resonator 2. The incident field in 2, denoted by 1_1_2, excites
the various modes of 2. In particular, a mode of the
magnetic dipole type will give a contribution [5]

k* Py H, -
E_L—z-hm2(r)'

H=-—
k*—k% N?

In (8), N? is a normalization constant, given by

N2= /a{f|h_m|2dV.
1

space

(9)

The symbol k? denotes the wavenumber in the dielectric,
viz.

k? = @y — jopoo
= wzeo,u,ON2 — joo = wze,uo (l — L) . (10)
Q4
Here, Q,is the quality factor of the dielectric material. The
vector p,, is the eigen-magnetic moment of the resonant
mode, given by

ﬁm=%ffffxde=%ff/churlﬁde. (11)
diel diel

This moment has a well-defined direction, characterized
by unit vectors @, and i, in Fig. 1(a). We write p,,; = p,.i;
and p,, = p,#,. In the vicinity of a resonant frequency, if
Q, is very high, the amplitude coefficient of the resonant
mode becomes very large, and the magnetic field H pro-
duced by 2 takes the approximate form

= -~ w? i, H
H=F 2hm2 == ;\7 2 2

wz—w,zn(l+é) m

Puhma(7)- (12)

(8).
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In this formula, we have introduced the total quality factor

Q, given by
1 1

11,1

+ 13
Q Qd Qr ( )
where Q, is the radiation quality factor. This quantity will
be discussed in Section IV.
At large distances, the field (12) is the field of a magnetic
dipole of moment

22—
2 pmuZ'

2 2 1 _J_) m
@ —wm( +Q

A similar equation can be written for P, the magnetic
moment of resonator 1. The latter moment produces the
field H, in which resonator 2 is immersed. From classical
magnetostatics, H, is (Fig. 1(a))

—_IPml-——-— 1Pm1__ O

Hy=5- o3 (a-a)a+ a7 Do ax(axu). (15)
Inserting (15) in (14) yields, for the mode excitation coeffi-
cient F,, the value

— w?

= iy
Pm2 = F‘meZ ==

(14)

w? p,%, 1

T\ N2 3
W~ w,2,,<1+ L) N, 4D
Q

[3(@-a,)(@-a,)~(a,-3,)] . (16)
Comparison with (5) shows that there is a complete paral-
lelism between the responses of the R— L —C circuits and of
the dielectric resonators. It is seen, indeed, that the 7’s and
the F’s satisfy analogous equations. The coupling coeffi-
cient for the dielectric bodies is clearly

Fy=—

1 p2
Y= 3 Ar2
20D N?

[1.5(a- @) (@ d,)~0.5(5,-4,)]. (17)

The factor p2 /2w N? has the dimension of a volume. It
can therefore be written as
1 P 3 (18)
27 N?
where L is a characteristic length of the resonator. For a

sphere of radius a, for example, it is 0.85 a. The coupling
coefficient now becomes

L 3
v=(5) 0 (19)
where 0, the term between brackets in (17), is an orienta-
tion factor, the value of which lies between +1 and — 1. It
is seen that y decreases proportionally with 1/D3.

The coupled resonator structure can oscillate in two
modes

a) the even mode, with frequency given by (3), F, = F,,
and moments P, and P, , oriented as in Fig. 1(b), and

b) the odd mode, with frequency given by (4), Fi= — F,,
and moments P, and P, , oriented as in Fig. 1(c).

Let us consider the important particular case of a reso-
nant structure with symmetry plane #. For such case:
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Fig. 3. Coupled resonators located symmetrically with respect to a

plane 7. (2) Even mode. (b) Odd mode.

a) An electric wall condition exists in 7 for the even mode
(Fig. 3(a)). This mode, therefore, describes the field of
the isolated dielectric resonator in the presence of a
metallic ground plane. The relevant coupling coeffi-
cient, valid for sufficiently large D, is

y=—%(%)3(l+coszﬂ). (20)

It is seen that y is negative, and lies between — L3/2D?
(P, parallel with the conducting plane) and — L/D?
(P, perpendicular to that plane). As y is negative, the
presence of the wall increases the resonant frequency.
b) A magnetic wall boundary condition exists in « for the
odd mode (Fig. 3(b)). The presence of the wall now

~ decreases the resonant frequency.

IV. FORCED OSCILLATIONS OF COUPLED
DIELECTRIC RESONATORS.
THE RADIATION Q

A. The Amplitude of the Forced Oscillations

Let the coupled structure of Fig. 1(a) be immersed in an
incident field E*, H', of frequency close to w,,. The coeffi-
cients of excitation of the modes, F, and F,, are still given
by (12), but the field H, now consists of the incident value
H plus the field produced by resonator 1. We write, from

15),

— — 1Py, __ VP, .
H2=H2+E~l—;"?(u-ul)u+E—;—Sux(uXul).

(21)

When this value is inserted in the formula for F,, it yields

E=— . (22)

w? P (= i
j [Xﬁ(“z'Hz)'*'YFl
wz—w,zn(l—ka) m
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This relationship can be rewritten as

2 .
w—&(l+i)
®

. Pm — —;i . .
—Jo (uz-Hz) = joyF,+j
(23)

In this form it is clearly similar to (7), the corresponding
equation for the coupled R-L-C circuits. More specifi-
cally, the left-hand member of (23) plays the role of the
forcing function ¥, /L, and the right-hand member repro-
duces that of (7) provided we remember that, in the
vicinity of resonance,
w21 w? 1 w,

(24)

The forced oscillations of the coupled dielectric resona-
tors therefore obey the same laws as those of the coupled
R-L-C systems. In particular, the amplitude of oscilla-
tion at resonance will be limited by the value of the

Q-factor. The latter should therefore be investigated in .
suitable detail.

B. Reactive Energy ‘
To evaluate Q, we shall apply the classical formula

0

- w Xaverage reactive energy
average dissipated power

(25)

The reactive energy in that formula is that of the lossless
structure. It consists of a magnetic part and an electric
part. Detailed calculations show [6] that the time-averaged
magnetic energy of the coupled system can be written as

€,=2(1+7v)e,, (26)
where the upper and lower signs correspond, respectively,
to the even and odd modes, and where ¢,,; is the magnetic
energy of the isolated resonator, assumed excited with
coefficient | F| = | F|| = | F,|. A similar relationship exists for

the electric energy, viz.
€, =2(1+v)e,, 27)

For the isolated resonator €, = ¢,,;. It is seen that equipar-
tition of energy still holds at the resonant frequencies of
the even and odd modes. Adding (26) and (27) shows that
the total reactive energy is given by

e=2(1%7v)e,. (28)
For the configuration of Fig. 3(a), where a single resonator
is located in the vicinity of a metallic screen, the reactive
energy for the half-space is

N

e=(1+7)e,= [1— %(%)3(1%03?-0)}6,. (29)

C. Radiated Power
The power radiated by the coupled resonators is that

associated with the total magnetic dipole P, + P, ,. From
(14), the total moment is
P, = F,p, (& +,) (30)
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for the even mode, and

Fm=F1pm(171_l72) (31)
for the odd mode. The justification for adding the mag-

netic moments rests on the fact that the electric dipole -

moment (1/jw) [JdV of the resonator vanishes [1]. This
makes P, invariant with respect to a shift of origin, as
shown by the elementary calculation

Bo=Lf [ [rxiav

=%fff(5+f’)xde=%///f’xde. (32)

The average power radiated by a magnetic dipole is
(1/12)7w*c3py| P> It follows that the power radiated
by the coupled system at resonance is given, in the even
-mode, by '

21+ @,-i1,) =@2(1+171-172)
12m (1+7)° (1+7y)*

(33)
where P, is the power radiated (at the resonance frequency

w,,) by the isolated resonator of excitation level [F|. In the
odd mode

§og2l ) (34)

L -y
Combining (28), (33), and (34) gives
_, (xy)” ‘
Q’—_Qiliﬁl’ﬂz (35)
For the single resonator in front of a metallic screen
3 5/2
[1 ~ %(%) (1‘+cos29)}

2sin® 6
In this expression, Q, is the quality factor of the isolated
resonator, given by [1]

N3
Qi = 3 3" (3 7)
(kL)
The previous formulas break down when the total P,
vanishes. This happens, for the even mode, when #, = — #,,

and for the odd mode, when #, =#,. In both cases, a
multipole analysis must be performed to evaluate the radi-
ated power [7]. We shall not solve this problem in its most
general form, but only for the particular case discussed in
Section V.

V. AN ILLUSTRATIVE ExaMpPLE: COUPLED
CIRCULAR CYLINDERS

A. The Isolated Resonator

The coupled resonator structure shown in Fig. 4(a)
possesses symmetry of revolution. It follows that the char-
acteristics .of its lowest magnetic-moment mode can be
determined by solving a scalar problem. The numerical
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Fig. 4. Coupled circular cylindrical resonators located symmetrically
with respect to .

solution of this problem, for arbitrary D, is available
elsewhere. [8]. We shall compare these results with the
predictions of our asymptotic theory. In the lowest p,
mode, the electric field is azimuthal with circular lines of
force, and the magnetic field lies in the meridian plane.-
The choice of positive directions for #, and #, is not
evident here, because of the special symmetry of the reso-
nators. With the choice #, = — i1, = it, shown in Fig. 4, we
respect our previous conventions, which associate an elec-
tric wall with an even mode, and a magnetic wall with an
odd mode. We could also have taken i, = ii, = i,, which
would have associated an electric wall with an odd mode,
and a magnetic wall with an 6dd mode. The latter conven-

. tion is often preferred in microwave applications. The

physical results are obviously independent of our choice,"

‘which is a matter of taste.

The characteristics of the isolated resonator have been
given elsewhere [2]. Some of them are reproduced in
Table L. .

B. The Even Mode

The resonant configuration is shown in Fig. 4(b). Values
for the coupling coefficient, given by y=—(L /D)3, are
given in Table II. It is seen that the coupling coefficient is
down to only a few percent for D/a=3. A comparison
between the asymptotic values of k,,a, as given by (3), and
the values obtained by direct numerical evolution is inter-
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01%

Fig. 5. Shift in the resonance frequency produced by coupling. Data for
the even mode with upward frequency shift.

TABLE I
DATA FOR THE ISOLATED RESONATOR

b_ .
-2—3——0.5

a 3.2658

b
33 = 1
2.8276

O x|

[S-)

0.142 0.147

|

=
w

0.966

wic

0.846

TABLE 11
CouPLING COEFFICIENT

b _ b _
22 =1 25 = 1.5

.2
5

y=-0.113

3 y=-0.0445
-0.0849 3

3

4

-0.0367
-0.0280
-0.0188
~000%1

w
[
2o
[

== L.
¥y=-0.605 z

& o
"

-0.0579
-0.0335

2
2 2.2
.5 -0.179 2.5
3
4 ~3.0141

esting. For A /a =1, for example, the asymptotic values for
h/a=1and b/2a equal to 0.5, 1, and 1.5, are 3.303, 2.848,
and 2.686, respectively. The corresponding numerical val-
ues are 3.266, 2.828, and 2.673. The agreement is satisfac-
tory. For larger values of 4 /a, it is recommended to switch
to the asymptotic formula, as it is difficult to obtain
numerical results which give comparable accuracy. The
agreement is further illustrated in Fig. 5, which shows
values of the relative frequency shift Aw/w,, = w, — @,, /®,,.
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The dots represent the numerical values, the dashed lines
the asymptotic values. The convergence of the two sets of
curves for increasing D /a is evident.

The calculation of the radiation Q requires evaluation of
the radiated power. This point implies knowledge of the
far-field. In the present case, the source (i.e., the coupled
resonator structure) is small with respect to A, hence a
multipole expansion should be introduced [7]. With the
field and current polarities shown in Fig. 4(b), the far-field
turns out to be produced by a magnetic quadrupole mo-
ment Q,,, and to have the value
—JkR

= 1 3 - =\ e
E_——g;]kORcuRX(uR'Qm)T' (38)

A few elementary calculations show that

g,- J[[lix Frrxilav

1+2

Wi Wi

DP,,(2u,i, — u, i, — i)

(39)

where P, is the magnetic dipole moment of the isolated

dielectric resonator 1. The free-space radiated power fol-

lows as
RC
P = mngzp,ﬁl. (40)
The resulting Q.4 is, from (28), (33), and (37)
w2(1+v)e, 10N2(1+7)°°
Qe = qP = ( ) Qi' (41)

(kD)

As Q, is proportional with N3, Q, will be proportional with
N3. Table HI shows values calculated from (41), using the
data of Tables I and II. They are shown in the column
“approx.”, while the column “numer.” refers to the values
obtained by the full numerical solution of the problem [8].
It is seen that the asymptotic formula gives an accuracy of
the order of 1 percent as soon as the spacing 24 is equal to
the diameter 2a.

C. The Odd Mode

In the odd mode, tighter coupling lowers the resonant
frequency. In Fig. 6 we have plotted the absolute value
|Aw/w,,| of the frequency shift, using the same conventions
as in Fig. 5. The quality factor is given, in the weak
coupling approximation, by

0=2:(1- 1),

The asymptotic value, for large spacings, is —Qz—’ In Table
1V, the ratio of Q, to (Q, /2) is given for a few values of
the parameters. The column “approx.” refers to asymptotic
formula (42), the column “numer.” to results obtained by
full numerical solution of the problem [8]. Both results
agree to within a few percent as soon as & /a exceeds one.

(42)

D. Additional Verification

The asymptotic formulas have also been tested versus
numerical results obtained for coupled spherical resonators
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Fig. 6. Shift in the resonance frequency produced by coupling. Data for
the odd mode with downward frequency shift.

TABLE III
VALUES OF1 /N3 Q,
b b b _
oz = 0-5 rrill PriE
approx. numer. approx. numer . approx. numer.
2 =9 0.0052 0.0434 0.0302 0.0265% 0.0174 0.0142
Q.14 0,0205 0.0421 0.0278 0.0248 0.0157 0,.0134
0.29 0.0297 0.0373 0.023%  ©.0221 0.0136 0.0122
0.5 0.0253 0.0269 0.0181 0.0176 0.0107 0.0102
1 0.0137 0.0139 0.0109 0.0109 0.00709 0.00701
TABLE IV
RATIO OF Q10 Q, /2
b . ) 5
3 Q.5 3° 1 3 .5
approx. Numer. | approx numer. approx  numer.
.o 3,33 2.075 | 1.307  1.568 | 1.115  1.375
6.1 2,150 1.638 1.226 1.338 1.094 1.213
0.25 1.527 1.340 1.151 1,188 1.071 1.118
0.5 1.205 1.1S83 1.086 1.094 1.048 1.061
1 1.058 1.052 1.036 1.037 1.024 1.025

[9]. The asymptotic form of the resonant frequency is here

x| te (5] | @)

1913

For a center-to-center distance D of 4a, ie., twice the
diameter, asymptotic and numerical values turn out to
agree within 0.5 percent.

V1. CONCLUSION

In the previous paragraphs, formulas have been derived
which give the resonant frequencies and Q of the “mag-
netic moment” mode of coupled resonators of high ¢,. The
coupling mechanism splits the resonant mode of the iso-
lated resonator in two separate modes, of even and odd
parity, respectively. The formulas, valid for large center-
to-center spacings D between resonators, turn out to be
identical with those for weakly coupled R—L-C circuits.
The coupling coefficient for the dielectric resonator pair is
given by

where L is a characteristic length of the resonator, of the
order of its general dimensions, and 0 an orientation
factor, comprised between —1 and + 1. At large distances,
v is small, and the difference between the resonant fre-
quencies w, and , of the odd and even modes is corre-
spondingly small. For such cases, the asymptotic formulas
of the text are particularly suitable, as a direct numerical
procedure requires considerable accuracy on w, and w,
separately to give an accuracy on the relative difference
we N wO

1 ‘
E(we + wo)

comparable with that of the a§ymptotic formula. These
remarks have been confirmed by looking at a solved
numerical example, that of two coupled circular cylinders
with a common axis of revolution. If we extrapolate the
results obtained for this configuration, we arrive at the
conclusion that asymptotic and direct numerical results
agree to within about 1 percent, both in Q and relative
frequency difference, as soon-as the spacing D between
centers is of the order of 1.50 times the maximum dimen-
sion L, of the single resonator. When the spacing is of
the order of 1.2L,,, ., the coupling coefficient is of the
order of 5 percent, and so is the accuracy. It is seen that
the asymptotic solution is capable of yielding reasonably
accurate values at fairly tight couplings, hence, that it is
relevant for the design of structures such as microwave
filters. . -

In many practical applications, the dielectric resonators
are located close to a metallic boundary (e.g., the walls of a
waveguide), and the assumption of free-space coupling
becomes unrealistic. The extension of our theory to this
new situation will be discussed in a future article.
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Improved Waveguide Diode Mount Circuit
Model Using Post Equivalence Factor
Analysis

ROSS G. HICKS, STUDENT MEMBER, IEEE, AND PETER J. KHAN, SENIOR MEMBER, IEEE

Abstract —This paper presents an improved wide-band equivalent circuit
for a diode mount consisting of a gapped cylindrical post in a rectangular
waveguide. The empirical round post to flat strip equivalence factor used in
an earlier study by Eisenhart and Khan is replaced by one which is
calculated via an accurate analysis. Results indicating the dependence of
this equivalence factor on post diameter, post position, and frequency are
shown, allowing a more accurate interpretation from the Eisenhart and
Khan analysis.

I. INTRODUCTION

HIS PAPER is concerned with an analytical de-
termination of the impedance of a diode mount con-
sisting of a cylindrical post in shunt across a rectangular
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waveguide. The impedance is found at both the diode
package terminals on the cylindrical post and the wave-
guide terminal plane. Specifically, this paper substitutes a
theoretical analysis to determine a factor previously ap-
proximated through measurement.

The general modeling problem of a diode mount in
waveguide has been under study for many years resulting
in a large number of papers on the subject. Eisenhart and
Khan [1] carried out an extensive analysis, using a dyadic
Green’s function approach with an extension of the in-
duced EMF method, to obtain expressions for the required
impedances. The approach of FEisenhart and Khan was
later applied to a two-post mount structure by Fl-Sayed [2],
to a single-post two-gap configuration by Joshi and Cornick
(3], to a waveguide diode mount having a coaxial entry by
Eisenhart [4], and to a coaxial-line-waveguide junction by
Eisenhart et al. [S]. Ogiso and Taketomi [6] used this
approach to analyze iris-loaded waveguide diode mounts,
while Blocker ez al. [7] applied it to a study of the influence
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