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Dielectric Resonators

Abstmct —The resonant modes of a pair of coupled resonators of high c,

are considered in the limit of large spachrgsD between resmators.

Attention is foeused on the lowest “magnetic-moment” mode, where the

coupling effect leads to a spfft of the originaf mode into an even and an odd

part. Formnfas are obtained for the coupling coefficient, the resonant
frequencies and Q of the modes. They are strikingly similar to those for

weatdy-coupled R - L-C circuits. The accuracy of the formulas is verified
by comparing their predictions with direct nnruencaf data, available for

coupled circutar cyfindncal resonators.

I. INTRODUCTION

T HE RESONANT modes of a dielectric resonator of

high t, are obtained by solving the differential prob-

lem

– curl curl ~~ + k; Km = O in the dielectric

curl Fm = O outside the dielectric. (1)

BLADEL, FELLOW, IEEE

The eigenvector ~~ must be continuous across the boundary

surface, and of order l/R2 (or higher) at large distances

[1]. The numerical solution of (l), a difficult three-dimen-

sional problem, simplifies when the body is of revolution

(e.g., a sphere or a circular cylinder [2]). In the coupled

structure shown in Fig. 1, (1) must be solved in the

presence of a composite dielectric consisting of volumes 1

and 2. When the spacing between 1 and 2 is small, the field

distribution in each volume will be significantly perturbed

with respect to that of the resonator isolated in free space.

Any simplifying feature, such as symmetry of revolution,

will be lost, except in structures of the type shown in

Fig. 4.

Manuscript received January 29, 1982; revised May 6, 1982.

The author is with the Laboratory of Electromagnetism and Acoustics,
University of Ghent, Ghent, Belgium.

(a)

even mode
(b)

odd mode ‘Fm2

(c)

Fig. 1. Coupled resonators with corresponding resonant modes.

The conclusion is clear: the three-dimensional problem

must be solved. To avoid this very arduous task, approxi-

mations have been made in the past [3], [4]. Cohn,’ for

example, represents dielectric resonators by conducting

loops carrying currents 1, and endowed with 1., C, and
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mutual inductance M. In the present paper, we shall keep

the idea of the equivalent circuit, but will seek to obtain its

parameters by direct field methods. Given the complexity

of the problem. we shall assume that the resonators are

“far apart”. An asymptotic approach is now possible,

which is valid for large spacings D. Truly, resonators in

structures such as microwave filters are normally tightly-

coupled. It will be interesting, however, to investigate how

good (or bad) our asymptotic results are at moderate

spacings D. Good results would allow us to extend the

applicability of our (very simple) formulas to many realis-

tic configurations.

To simplify the problem, while retaining the main fea-

tures of the method, we shall assume (1) that the two

resonators are identical, although oriented arbitrarily with

respect to the line joining their reference points O~Oz, and

(2) that the analysis centers on the lowest resonant mode,

which radiates like a magnetic dipole ~~ [1].

Central to our analysis is the concept of “large D”. We

shall assume D to be large enough for (1) the exterior field

~~ of the isolated resonator to be undistinguishable, for all

practical purposes, from that of a dipole ~~ located in O.

From the example of the ring-resonator, for which accurate

data are available [2], it can be expected that this assump-

tion will be acceptable as soon as D is larger than twice the

largest dimension of the resonator, and (2) the exterior

field r$~ of the isolated resonator to be practically constant

over the volume occupied by the other resonator.

On the other hand, we shall restrict D to remain small

with respect to AO, the wavelength in vacuo. This restric-

tion ensures that resonator 2 lies in the static-field of

resonator 1 (and conversely). It is useful, in that respect, to

note that the angular frequency at resonance, and the

corresponding wavelength, are given by

am = ; kmc

(Am)o =&. (2)

For large indices of refraction N = K (the limit in which

we are interested), A ~, and therefore the extent of the static

region, will be correspondingly large. For a sphere, for

example, the lowest value of 2 n/km is twice the radius a,

hence AO is N times 2a. The theory developed in the sequel

shows striking similarities with that of coupled resonant

LC circuits. We shall therefore start with a short enumera-

tion of the main results of the latter.

II. SOME RESULTS FROM COUPLED LC CIRCUIT

THEORY

Fig. 2(a) shows two magnetically coupled resonant cir-

cuits. The mutual inductance M is positive when the fluxes

created by positive 11 and Iz have the same sense in the

coils, and negative in the opposite case. Let y be the

coupling coefficient M/L, and u, = ( LC) – 1Z2the resonant

angular frequency of the isolated circuit. The coupled

circuit can resonate in two modes, characterized by differ-

ent resonant frequencies, viz. (Fig. 2(b)) a) the even mode,

11
—

12
—

M
(a)

I I

DE
even mode odd mode

(b)

II 12
—

‘1CIIIJ
M
(c)

Fig. 2. Coupled resonant circuits with fundamental modes of oscilla-

tion.

where
“

(3)

and b) the odd mode, where

ll=– IZ. (4)

When y is positive the higher frequency is that of the

odd mode, the lower one that of the even mode. When y is

negative, the opposite occurs. Notice also that the even or

odd character depends on the (arbitrary) choice of the

positive directions for II and Iz.

Let us now introduce a resistance R in series with each

LC circuit. In the absence of sources, the following rela-

tionship exists between 11 and 12:

yd
=—

l:\
12. (5)
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Here, Q is the quality factor u, L/R (assumed high), and

the right-hand expression in (5) is valid in the immediate

vicinity of o.. When the coupled structure oscillates freely,

the even a“d odd modes have different quality

given respectively by

o, L(l+y) _ u,L
Q,= ~ ~ fi=Qfi

facto&,

Under forced oscillations (Fig. 2(c)), the circuit equa-

tions become

III. FREE OSCILLATIONS OF COUPLED DIELECTRIC

RESONATORS

Following the policy outlined in the Introduction, we

shall assume that each resonator in the structure of Fig.

1(a) behaves like an isolated resonator immersed in the

(uniform) weak field ~ of the other. Let us first consider

resonator 2. The incident field in 2, denoted by i%z, excites

the various modes of 2. In particular, a mode of the

magnetic dipole type will give a contribution [5]

IT= –

k2 Fm2”~2~m2(r).

k2 – k2 N:
m

(8)

In (8), N; is a normalization constant, given by

N;= ~j””l~m12dV. (9)
all

space

The symbol k2 denotes the wavenumber in the dielectric,

viz.

k2 = u2<p0 – jupou

= a2cOpON2
( “)- jopo” = ‘2’p0 1- & “

(lo)

Here, Qd is the quality factor of the dielectric material. The

vector ji~ is the eigen-magnetic moment of the resonant

mode, given by

This moment has a well-defined direction, characterized

by unit vectors ii, and ii2 in Fig. 1(a). We write j7m1= Pmill

and pm~ = pm ii2. In the vicinity of a resonant frequency, if
Qd is very high, the amplitude coefficient of the resonant

mode becomes very large, and the magnetic field ~ pro-

duced by 2 takes the approximate form

1909

In this formula, we have introduced the total quality factor

Q, given by
1111—.

Q Qci Q,

(13)

where Q, is the radiation quality factor. This quantity will

be discussed in Section IV.

At large distances, the field (12) is the field of a magnetic

dipole of moment

A similar equation can be written for ~~1, the magnetic

moment of resonator 1. The latter moment produces the

field ~2 in which resonator 2 is immersed. From classical

magnetostatics, ~2 is (Fig. l(a))

E2=+-(ti. z,)ti+.g #iix(axti,). (15)

Inserting (15) in (14) yields, for the mode excitation coeffi-

cient F2, the value

.[3(iioq)(iioii2 )-(z71.ti2)]F1. (16)

Comparison with (5) shows that there is a complete paral-

lelism between the responses of the R – L – C circuits and of

the dielectric resonators. It is seen, indeed, that the 1‘s and

the F‘s satisfy analogous equations. The coupling coeffi-

cient for the dielectric bodies is clearly

y= +$[1.5(@ti,)(@-o.5( z,.z2)]. (17)
m

The factor pi/2 mN~ has the dimension of a volume. It

can therefore be written as

(18)

where L is a characteristic length of the resonator. For a

sphere of radius a, for example, it is 0.85 a. The coupling

coefficient now becomes

()L3
Y=jjo (19)

where O, the term between brackets in (17), is an orienta-

tion factor, the value of which lies between + 1 and – 1. It

is seen that y decreases proportionally with l/D3.

The coupled resonator structure can oscillate in two

modes

a) the even mode, with frequency given by (3), F1 = Fz,

and moments ~Wl and ~~2 oriented as in Fig. l(b), and

b) the odd mode, with fre~uency given by (4), F,= – F2,

and moments PMI and Pm2 oriented as in Fig. l(c).

Let us consider the important particular case of a reso-

nant structure with symmetry plane n. For such case:
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electric
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wa 11
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Fig. 3. Coupled resonators located symmetrically with respect to a
plane r. (a) Even mode. (b) Odd mode.

a) An electric wall condition exists in v for the eoen mode
(Fig. 3(a)). This mode, therefore, describes the field of

the isolated dielectric resonator in the presence of a

metallic ground plane. The relevant coupling coeffi-

cient, valid for sufficiently large D, is

y=-w3(1+co’2~)”(20)

It is seen that y is negative, and lies between – L3/2D3

(~~ parallel with the conducting plane) and – L3/D3

(Pm perpendicular to that plane). As y is negative, the

presence of the wall increases the resonant frequency.

b) A magnetic wall boundary condition exists in ~ for the

odd mode (Fig. 3(b)). The presence of the wall now

decreases the resonant frequency.

IV. FORCED OSCILLATIONS OF COUPLED

DIELECTRIC RESONATORS.

THE RADIATION Q

A. The Amplitude of the Forced Oscillations

Let the coupled structure of Fig. l(a) be immersed in an—. —.
incident field E‘, H’, of frequency close to u~. The coeffi-

cients of excitation of the modes, F, and Fz, are still given

by (12), but the field ~2 now consists of the incident value

@ plus the field produced by resonator 1. We write, from

(15),

(21)

When this value is inserted in the formula for F2, it yields

F2=–
cJ2

()
[

~(ti2.~; +yF) ,]. (22)

a’ –Q: l+J m
Q

This relationship can be rewritten as

(23)

In this form it is clearly similar to (7), the corresponding

equation for the coupled R – L – C circuits. More specifi-

cally, the left-hand member of (23) plays the role of the

forcing function VJ/L, and the right-hand member repro-

duces that of (7) provided we remember that, in the

vicinity of resonance,

The forced oscillations of the coupled dielectric resona-

tors therefore obey the same laws as those of the coupled

R-L - C systems. In particular, the amplitude of oscilla-

tion at resonance will be limited by the value of the

Q-factor. The latter should therefore be investigated in

suitable detail.

B. Reactive Energy

To evaluate Q, we shall apply the classical formula

Q.
a X average reactive energy

average dissipated power “
(25)

The reactive energy in that formula is that of the lossless

structure. It consists of a magnetic part and an electric

part. Detailed calculations show [6] that the time-averaged

magnetic energy of the coupled system can be written as

EM=2(l+y)6mi (26)

where the upper and lower signs correspond, respectively,

to the even and odd modes, and where c~i is the magnetic

energy of the isolated resonator, assumed excited with

coefficient IF I = IF, I = IF21. A similar relationship exists for

the electric energy, viz.

ce=2(l*y)6ei (27)

For the isolated resonator Cei= ~~i. It is seen that equipar-

tition of energy still holds at the resonant frequencies of

the even and odd modes. Adding (26) and (27) shows that

the total reactive energy is given by

c=2(l*y)6i. (28)

For the configuration of Fig. 3(a), where a single resonator

is located in the vicinity of

energy for the half-space is

[
C=(l+y)ci= l–

a metallic screen, the reactive

1;($)3(1+cos26) 6, (29)

C. Radiated Power

The power radiated by the coupled resonators is that

associated with the total magnetic dipole ~~1 + ~Wz. From

(14), the total moment is

~~=F1p~(iZ1+ti2) (30)



VAN BLADEL: COUPiED DIELECTRIC RESONATORS
1911

for the even mode, and

Fm=F, pm(ii, -ii2) (31)

for the odd mode. The justification for adding the mag-

netic moments rests on the fact that the electric dipole

moment (1 /j~ ) /~dV of the resonator vanishes [1]. This

makes ~~ invariant with respect to a shift of origin, as

shown by the elementary calculation

The average power radiated by a magnetic dipole is

(1/12) m04c-3pOl~~l 2. It follows that the power radiated

by the coupled system at resonance is given, in the even

mode, by

2(l+z71”ti*) =#1+%”~2)

f?= *CJ$3NOIFI*P;

(l+y)2 i (l+y)’

(33)

where !?i is the power radiated (at the resonance frequency

u~) by the isolated resonator of excitation level IF I. In the

odd mode

~=gi2(:;_~;~) . (34)

Combining (28), (33), and (34) gives

(35)

For the single resonator in front of a metallic screen

Q =Q[l-+(:r(l+cos2~)15’2 (36)

PI
2sin2 $

In this expression, Qi is the quality factor of the isolated

resonator, given by [1]

N3

‘i=3(kmL)3 “
(37)

The previous formulas break down when the total ~~

vanishes. This happens, for the even mode, when ill = — ii2,

and for the odd mode, when ill = ii2. In both cases, a

multipole analysis must be perfo~med to evaluate the radi-

ated power [7]. We shall not solve this problem in its most

general form, but only for the particular case discussed in

Section V.

V. AN ILLUSTRATIVE EXAMPLE: COUPLED

CIRCULAR CYLINDERS

A. The Isolated Resonator

The coupled resonator structure shown in Fig. 4(a)

possesses symmetry of revolution. It follows that the char-

acteristics of its lowest magnetic-moment mode can be

determined by solving a scalar problem. The numerical

I
(a)

even mode odd mode
(b) (c)

Fig. 4. Coupled circular cylindrical resonators located symmetrically

with respect ton.

solution of this problem, for arbitrary D, is available

elsewhere, [8]. We shall compare these results with the

predictions of our asymptotic theory. In the lowest ~~

mode, the electric field is azimuthal with circular lines of

force, and the magnetic field lies in the meridian plane.

The choice of positive directions for ~1 and ii2 is not

evident here, because of the special symmetry of the reso-

nators. With the choice iil = – ii2 = z= shown in Fig. 4, We

respect our previous conventions, which associate an elec-

tric wall with an even mode, and a magnetic wall with an

odd mode. We could also have taken El = ZZ = ~z, which

would have associated an electric wall with an odd mode,

and a magnetic wall with an odd mode. The latter conven-

tion is often preferred in microwave applications. The

physical results are obviously independent of our choice,

which is a matter of taste.

The characteristics of the isolated resonator have been

given elsewhere [2]. Some of them are reproduced in
Table I.

B. The Even Mode

The resonant configuration is shown in Fig. 4(b). Values

for the coupling coefficient, given by y = – (L/D)3, are

given in Table II. It is seen that the coupling coefficient is

down to only a few percent for D/a= 3. A comparison

between the asymptotic values of k~a, as given by (3), and

the values obtained by direct numerical evolution is inter-
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Fig. 5. Shift in the resonance frequency produced by coupling, Data for

the even mode with upward frequency shift.

TABLE I
DATA FOR THE ISOLATED RESONATOR

T

b
= 0.5

b =1
b = 1.5

z z z
kma 3.2658 2.8276 2.6728

Q,

~
0.142 0.147 0.131

; 0.846
a

0.966 1.062

TABLE II

COUPLING COEFFICIENT

b b
-z = 0.5 =1 b

z z = 1.5

h =0 Q=,
z a Y=-u.605 :=2 y=-o. 113 Q =3

a
0.1

Y=-O. 0445

1.2 -0.350 2.2 -0.0849 3.2 -0.0367

0.25 1.5 -0.179 2.5 -0.0579 3.5 -0.0280

0.5 2 -0.0757 3 -0.0335 4 -0.0188

1 3 -0.0224 4 -0.0141 5 -000%1

I I I I 1

esting. For h/a = 1, for example, the asymptotic values for

h/a = 1 and b/2a equal to 0.5, 1, and 1.5, are 3.303,2.848,

and 2.686, respectively. The corresponding numerical val-

ues are 3.266, 2.828, and 2.673. The agreement is satisfac-

tory. For larger values of h /a, it is recommended to switch

to the asymptotic formula, as it is difficult to obtain

numerical results which give comparable accuracy. The

agreement is further illustrated in Fig. 5, which shows

values of the relative frequency shift Au/u~ = u, – am /oM.

The dots represent the numerical values, the dashed lines

the asymptotic values. The convergence of the two sets of

curves for increasing D/a is evident.

The calculation of the radiation Q requires evaluation of

the radiated power. This point implies knowledge of the

far-field. In the present case, the source (i.e., the coupled

resonator structure) is small with respect to A, hence a

multipole expansion should be introduced [7]. With the

field and current polarities shown in Fig. 4(b), the far-field

turns gut to be produced by a magnetic quadruple mo-

ment Q~, and to have the value

A few elementary calculations show that

= :%1 (z~z% – ~,~x – fiy.zy) (39)

where P~l is the magnetic dipole moment of the isolated

dielectric resonator 1. The free-space radiated power fol-

lows as

‘3’= &k; D2P;l.

The resulting Q,=~ is, from (28), (33), and (37)

(40)

As Q, is proportional with N3, Q. will be proportional with

~5. Table 111 shows values calculated from (41), using the

data of Tables I and II. They are shown in the column

“ approx.”, while the column “ numer.” refers to the values

obtained by the full numerical solution of the problem [8].

It is seen that the asymptotic formula gives an accuracy of

the order of 1 percent as soon as the spacing 2h is equal to

the diameter 2a.

C. The Odd Mode

In the odd mode, tighter coupling lowers the resonant

frequency. In Fig. 6 we have plotted the absolute value

lAti/u~l of the frequency shift, using the same conventions
as in Fig. 5. The quality factor is given, in the weak

coupling approximation, by

Q,= $&l- ~)5/2. (42)

The asymptotic value, for large spacings, is ~. In Table

IV, the ratio of QO to (QZ /2) is given for a few values of

the parameters. The column” approx.” refers to asymptotic

formula (42), the column “ numer.” to results obtained by

full numerical solution of the problem [8]. Both results

agree to within a few percent as soon as h/a exceeds one.

D. Additional Verification

The asymptotic formulas have also been tested versus

numerical results obtained for coupled spherical resonators
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h \
For a center-to-center distance D of 4a, i.e., twice the

?0% , \ diameter, asymptotic and numerical values turn out to

\ ‘\ agree within O.5 percent.
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Fig. 6. SMftinthe resonace frequency produced bycoupfing. Data for

the odd mode with downward frequency shift.

TABLE III
VALUES OF l/N5 Q,

~ . ~.~ b.,
=

approx. numer. approx. kmer.

h=. 0.0052 0.0434
z

0.0302 0.0265

0.1 0.0205 0.0421 0.0278 0.0248

0.2: 0.029? 0.0373 0.0239 0.0221

0.5 b.0253 0.0269 0.0181 0.0176

t 0.0137 0.0139 0.0109 0.0109

TABLE IV

&TIO OF Q. TO Q,/2

b; . 0.5

i=-++==
0.1 2.150 1.638

0.25 1.527 1.340

0.5 1.205 1.153

1 1.058 1.052

I

b,-.
a

approx naner.

1.307 1.568

1.226 1.338

1.151 1.188

1.086 1.094

1.036 1.037

b
z

= 1.5

approx. numer.

0.0174 0.0142

0.0157 0.0134

0.0136 0.0122

0.0107 0.0102

0.00709 0.00701

b. ,,5z
approx numer.

1.115 1.375

1.094 1.213

1.071 1.118

1.048 1.061

1.024 1.025

[9]. The asymptotic form of the resonant frequency is here

(43)

VI. CONCLUSION

In the previous paragraphs, formulas have been derived

which give the resonant frequencies and Q of the “ mag-

netic moment” mode of coupled resonators of high (,. The

coupling mechanism splits the resonant mode of the iso-

lated resonator in two separate modes, of even and odd

parity, respectively. The formulas, valid for large center-

to-center spacings D between resonators, turn out to be

identical with those for weakly coupled R – L – C circuits.

The coupling coefficient for the dielectric resonator pair is

given by

where L is a characteristic length

order. of its zeneral dimensions,

of the resonator, of the

and O an orientation

factor, comprised between – 1 and + 1. At large distances,

y is small, and the difference between the resonant fre-

quencies u. and u. of the odd and even modes is corre-.
spondingly small. For such cases, the asymptotic formulas

of the text are particularly suitable, as a direct numerical

procedure requires considerable accuracy on u. and UO

separately to give an accuracy on the relative difference

w. — an

comparable with that of the asymptotic formula. These

remarks have been confirmed by looking at a solved

numerical example, that of two coupled circular cylinders

with a common axis of revolution. If we extrapolate the

results obtained for this configuration, we arrive at the

conclusion that asympt@ic and direct numerical results

agree to within about 1 percent, both in Q and relative
frequency difference, as soon as the spacing D between

centers is of the order of 1SO times the maximum dimen-

sion L~m of the single resonator. When the spacing is of

the order of 1.2L~~, the coupling coefficient is of the

order of 5 percent, and so is the accuracy. It is seen that

the asymptotic solution is capable of yielding reasonably

accurate values at fairly tight couplings, hence, that it is

relevant for the design of structures such as microwave

filters.

In many practical applications, the dielectric resonators

are located close to a metallic ,boundary (e.g., the walls of ‘a

waveguide), and the assumption of free-space coupling

becomes unrealistic. The extension of our theory to this

new situation will be discussed in a future article.
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Improved Waveguide Diode Mount Circuit
Model Using Post Equivalence Factor

Analysis

ROSS G. HICKS, STUDENT MEMBER, IEEE, AND PETER J. KHAN, SENIOR MEMBER, IEEE

Abstract —This paper presents an improved wide-band equivalent circuit

for a diode mount consisting of a gapped cylindrical post in a rectangular

waveguide. The empiricaf round post to flat strip eqnivafence factor used in

an earlier study by Eisenhart and Rhan is replaced by one which is

calculated via an accurate analysis. Results indicating the dependence of

this eqnivafence factor on post diameter, post position, and frequency are

showo, aflowing a more accurate interpretation from the Eisenhart and

Khau anafysis.

I. INTRODUCTION

T HIS PAPER is concerned with an analytical de-

termination of the impedance of a diode mount con-

sisting of a cylindrical post in shunt across a rectangular
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waveguide. The impedance is found at both the diode

package terminals on the cylindrical post and the wave-

guide terminal plane. Specifically, this paper substitutes a

theoretical analysis to determine a factor previously ap-

proximated through measurement.

The general modeling problem of a diode mount in

waveguide has been under study for many years resulting

in a large number of papers on the subject. Eisenhart and
Khan [1] carried out an extensive analysis, using a dyadic

Green’s function approach with an extension of the in-

duced EMF method, to obtain expressions for the required

impedances. The - approach of Eisenhart and Khan was

later applied to a two-post mount structure by E1-Sayed [2],

to a single-post two-gap configuration by Joshi and Cornick

[3], to a waveguide diode mount having a coaxial entry by

Eisenhart [4], and to a coaxial-line-waveguide junction by

Eisenhart et al. [5]. Ogiso and Taketomi [6] used this

approach to analyze iris-loaded waveguide diode mounts,

while Blocker et al. [7] applied it to a study of the influence
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